Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 8(90): eadd5724, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134242

RESUMO

Tissue-resident CD8+ T cells (TRM) continuously scan peptide-MHC (pMHC) complexes in their organ of residence to intercept microbial invaders. Recent data showed that TRM lodged in exocrine glands scan tissue in the absence of any chemoattractant or adhesion receptor signaling, thus bypassing the requirement for canonical migration-promoting factors. The signals eliciting this noncanonical motility and its relevance for organ surveillance have remained unknown. Using mouse models of viral infections, we report that exocrine gland TRM autonomously generated front-to-back F-actin flow for locomotion, accompanied by high cortical actomyosin contractility, and leading-edge bleb formation. The distinctive mode of exocrine gland TRM locomotion was triggered by sensing physical confinement and was closely correlated with nuclear deformation, which acts as a mechanosensor via an arachidonic acid and Ca2+ signaling pathway. By contrast, naïve CD8+ T cells or TRM surveilling microbe-exposed epithelial barriers did not show mechanosensing capacity. Inhibition of nuclear mechanosensing disrupted exocrine gland TRM scanning and impaired their ability to intercept target cells. These findings indicate that confinement is sufficient to elicit autonomous T cell surveillance in glands with restricted chemokine expression and constitutes a scanning strategy that complements chemosensing-dependent migration.


Assuntos
Linfócitos T CD8-Positivos , Viroses , Camundongos , Animais , Linfócitos T CD8-Positivos/metabolismo , Memória Imunológica , Glândulas Exócrinas , Transdução de Sinais
2.
J Exp Med ; 220(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36662229

RESUMO

Migration and adhesion play critical roles in B cells, regulating recirculation between lymphoid organs, migration within lymphoid tissue, and interaction with CD4+ T cells. However, there is limited knowledge of how B cells integrate chemokine receptor and integrin signaling with B cell activation to generate efficient humoral responses. Here, we show that the WNK1 kinase, a regulator of migration and adhesion, is essential in B cells for T-dependent and -independent antibody responses. We demonstrate that WNK1 transduces signals from the BCR, CXCR5, and CD40, and using intravital imaging, we show that WNK1 regulates migration of naive and activated B cells, and their interactions with T cells. Unexpectedly, we show that WNK1 is required for BCR- and CD40-induced proliferation, acting through the OXSR1 and STK39 kinases, and for efficient B cell-T cell collaboration in vivo. Thus, WNK1 is critical for humoral immune responses, by regulating B cell migration, adhesion, and T cell-dependent activation.


Assuntos
Formação de Anticorpos , Linfócitos B , Camundongos , Animais , Tecido Linfoide , Transdução de Sinais , Linfócitos T CD4-Positivos , Antígenos CD40/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo
3.
Front Immunol ; 13: 982383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341455

RESUMO

Naive B cells use the chemokine receptor CXCR5 to enter B cell follicles, where they scan CXCL13-expressing ICAM-1+ VCAM-1+ follicular dendritic cells (FDCs) for the presence of antigen. CXCL13-CXCR5-mediated motility is mainly driven by the Rac guanine exchange factor DOCK2, which contains a binding domain for phosphoinositide-3,4,5-triphosphate (PIP3) and other phospholipids. While p110δ, the catalytic subunit of the class IA phosphoinositide-3-kinase (PI3K) δ, contributes to CXCR5-mediated B cell migration, the precise interdependency of DOCK2, p110δ, or other PI3K family members during this process remains incompletely understood. Here, we combined in vitro chemotaxis assays and in vivo imaging to examine the contribution of these two factors during murine naïve B cell migration to CXCL13. Our data confirm that p110δ is the main catalytic subunit mediating PI3K-dependent migration downstream CXCR5, whereas it does not contribute to chemotaxis triggered by CXCR4 or CCR7, two other chemokine receptors expressed on naïve B cells. The contribution of p110δ activity to CXCR5-driven migration was complementary to that of DOCK2, and pharmacological or genetic interference with both pathways completely abrogated B cell chemotaxis to CXCL13. Intravital microscopy of control and gene-deficient B cells migrating on FDCs confirmed that lack of DOCK2 caused a profound migration defect, whereas p110δ contributed to cell speed and directionality. B cells lacking active p110δ also displayed defective adhesion to ICAM-1; yet, their migration impairment was maintained on ICAM-1-deficient FDCs. In sum, our data uncover two complementary signaling pathways mediated by DOCK2 and p110δ, which enable CXCR5-driven naïve B cell examination of FDCs.


Assuntos
Molécula 1 de Adesão Intercelular , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Molécula 1 de Adesão Intercelular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Receptores CXCR5/metabolismo , Transdução de Sinais , Fatores de Troca do Nucleotídeo Guanina/genética , Quimiotaxia de Leucócito , Receptores de Quimiocinas , Fosfatidilinositóis , Proteínas Ativadoras de GTPase
4.
Cancers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35681706

RESUMO

Bruton's tyrosine kinase inhibitor ibrutinib has significantly changed treatment landscape in chronic lymphocytic leukemia (CLL). Growing evidence supports ibrutinib to work beyond the effect on tumor cells by means of, for example, restoring functionality of the T-cell compartment and increasing circulating T-cell numbers. Recent evidence suggests T-cell enhanced expansion, rather than increased egress from secondary lymphoid organs (SLO), as a root cause for ibrutinib-induced lymphocytosis. However, whether the latter physiological change is also a consequence of a forced retention in blood remains undisclosed. Since CCR7 is the main chemokine receptor taking over the homing of T-cells from peripheral compartments to lymph nodes and other SLO, we aimed to investigate the impact of ibrutinib on CCR7 functionality in T-cells. To this end, we documented receptor expression in T-cells from a large cohort of ibrutinib-treated CLL patients, and performed different in vivo and in vitro migration models. Overall, our data confirm that CCR7 expression or receptor-mediated migration in CLL T-cells is not affected by ibrutinib. Furthermore, it does not modulate CCR7-driven homing nor nodal interstitial migration. Together, our results support that ibrutinib-induced CLL T-cell accumulation in the blood stream is not derived from an impairment of CCR7-driven recirculation between the SLO and bloodstream, and therefore T-cell expansion is the most plausible cause.

5.
Sci Immunol ; 7(72): eabf1861, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35714202

RESUMO

The gastrointestinal (GI) tract constitutes an essential barrier against ingested microbes, including potential pathogens. Although immune reactions are well studied in the lower GI tract, it remains unclear how adaptive immune responses are initiated during microbial challenge of the oral mucosa (OM), the primary site of microbial encounter in the upper GI tract. Here, we identify mandibular lymph nodes (mandLNs) as sentinel lymphoid organs that intercept ingested Listeria monocytogenes (Lm). Oral Lm uptake led to local activation and release of antigen-specific CD8+ T cells that constituted most of the early circulating effector T cell (TEFF) pool. MandLN-primed TEFF disseminated to lymphoid organs, lung, and OM and contributed substantially to rapid elimination of target cells. In contrast to CD8+ TEFF generated in mesenteric LN (MLN) during intragastric infection, mandLN-primed TEFF lacked a gut-seeking phenotype, which correlated with low expression of enzymes required for gut-homing imprinting by mandLN stromal and dendritic cells. Accordingly, mandLN-primed TEFF decreased Lm burden in spleen but not MLN after intestinal infection. Our findings extend the concept of regional specialization of immune responses along the length of the GI tract, with CD8+ TEFF generated in the upper GI tract displaying homing profiles that differ from those imprinted by lymphoid tissue of the lower GI tract.


Assuntos
Linfócitos T CD8-Positivos , Mucosa Bucal , Linfonodos , Fenótipo , Linfócitos T Citotóxicos
6.
Front Immunol ; 12: 716405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566971

RESUMO

Naïve T cells (TN) constitutively recirculate through secondary lymphatic organs (SLOs), where they scan dendritic cells (DCs) for cognate peptide-loaded major histocompatibility complexes (pMHC). Continuous trafficking between SLOs not only enables rapid clonal selection but also ensures TN homeostasis by providing access to prosurvival signals from TCR, IL-7R, and the chemokine receptor CCR7. Inside the lymphoid tissue, CCR7-mediated TN motility is mainly driven by the Rac activator DOCK2, with a separate contribution by a phosphoinositide-3-kinase γ (PI3Kγ)-dependent pathway. Tec tyrosine kinases and the Rac activator Tiam1 constitute prominent downstream effectors of PI3K signaling. Yet, the precise role of Tec kinase versus Tiam1 signaling during CCR7-mediated TN migration and homeostasis remains incompletely understood. Here, we examined the function of the Tec family member interleukin-2-inducible T-cell kinase (Itk) and Tiam1 during TN migration in vitro and in vivo using intravital microscopy. Itk deficiency caused a mild decrease in CCR7-triggered TN migration, mirroring observations made with PI3Kγ;-/- T cells, while lack of Tiam1 did not affect TN motility. In silico modeling suggested that reduced migration in the absence of Itk does not result in a substantial decrease in the frequency of TN encounters with DCs within the lymphoid tissue. In contrast, Itk was important to maintain in vivo homeostasis of CD4+ TN, also in MHCII-deficient hosts. Taken together, our data suggest that Itk contributes to TN migration and survival by integrating chemokine receptor and TCR signaling pathways.


Assuntos
Movimento Celular/imunologia , Homeostase , Ativação Linfocitária/imunologia , Proteínas Tirosina Quinases/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Movimento Celular/genética , Quimiocina CCL21/metabolismo , Citocinas/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Ativação Linfocitária/genética , Camundongos , Proteínas Tirosina Quinases/genética , Transdução de Sinais
7.
Front Immunol ; 12: 626019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659008

RESUMO

Tissue-resident CD8+ T cells (CD8+ TRM) populate lymphoid and non-lymphoid tissues after infections as first line of defense against re-emerging pathogens. To achieve host protection, CD8+ TRM have developed surveillance strategies that combine dynamic interrogation of pMHC complexes on local stromal and hematopoietic cells with long-term residency. Factors mediating CD8+ TRM residency include CD69, a surface receptor opposing the egress-promoting S1P1, CD49a, a collagen-binding integrin, and CD103, which binds E-cadherin on epithelial cells. Moreover, the topography of the tissues of residency may influence TRM retention and surveillance strategies. Here, we provide a brief summary of these factors to examine how CD8+ TRM reconcile constant migratory behavior with their long-term commitment to local microenvironments, with a focus on epithelial barrier organs and exocrine glands with mixed connective-epithelial tissue composition.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doenças Transmissíveis/imunologia , Memória Imunológica , Glândulas Salivares/imunologia , Pele/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Comunicação Celular , Movimento Celular , Microambiente Celular , Doenças Transmissíveis/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Fenótipo , Glândulas Salivares/metabolismo , Pele/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...